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Supercavitating Flows: Small Perturbation Theory
and Matched Asymptotics

Professor K.V. Rozhdestvensky
St.Petersburg State Marine Technical University

Lotsmanskaya str., 3
190008, St.Petersburg

Russia

Summary: The lecture discusses some applications of the theory of small perturb)ations as applied to super-
cavitating flows. In this context the linear theory is viewed as an outer expJansion of a more coimplete nonlinear
solution of the flow problein. In addition to coimiparing linear solutions for a supercavitating flat plate for differ-
ent analogues of the cavity closure models, two exaimples are considered showing how to account for the presence
of local flow regions where the perturb)ations are not small. In the first exaimple a local asyimptotic solution
of the nonlinear flow problem in the vicinity of the leading edge is matched to the classical linear solution to
provide a uniformly valid pressure distribution along a supercavitating flat plate. In the second examiple, the
local nonlinear perturbation of the otherwise slightly perturbed flow is due to a spoiler fitted at the trailing
edge of a flat plate.

1. Introduction

In a nonlinear steady 2-D problem formulation for a potential flow past a supercavitating I)ody, one has to solve
Laplace equation in the domain occupied i)y the fluid with the following conditions on the flow bioundaries

"* Slip condition on the wetted part of the body

__0 H-y + l Y Yb(X> (1)
Ox dx Ox

where ( is perturbation velocity potential, y Ybb(x) is a fiuction, describing the contour of the wetted
part of the I)ody in Cartesian coordinate system., x-axis I)eing directed downstream. Note, that here all
quantities and fuictions are non-dimensionalized with use of the characteristic length of the I)ody and the
velocity of the oncoming flow.

"* Dynamic condition on the cavity

The pressure on the boundary of the cavity is assumed constant wherefrom the correspoonding pressure
coefficient C, should I)e taken equal in magnitude and opposite in sign to the cavitation numbli)er (T

C p0 2p 1( T - ( 1 Y+ ()X )C, =N -C, = Iy((l) (2)

where y - y•(x) describes the cavity contour, determined in the course of the problem solution.

"* Kinematic condition on the cavity

The cavity contour is a streamline, and, therefore, it should I)e sub)ject to a slip condition, identical to (1).

"* At the infinity the perturbation velocities should vanish.

In what follows we first consider a steady linearized flow problem for a supercavitating foil' using different linear
analogues of the cavity closure schemes. Used in particular are the analogues of the closed cavity termination
models (Riaboushinsky model, Efros-Gilbarg model, Tulin single-spiral vortex model), as well as those of Wu-
Fai)ula and Tulin double-spiral vortex termination models. Then two examples are presented showing how the
linearized (outer) solution can I)e supplemflented I)y a nonlinear local (inner) solution in the flow regions when the
perturb)ations are not necessarily small. These examples include: a uniformly valid solution of a flow problem
for a flat plate at an angle of attack (zero cavitation numi)er) and of that for a plate with a spoiler at the trailing
edge. Both examnples employ the method of matched asymiptotic expJansions (MAE), [2]. This technique consists
in finding a local (inner) solution in the appropriately stretched coordinates, blending it smoothly to the outer
(linear) solution, and, eventually obtaining a uniformly valid solution I)y additive composition of the inner and
outer solutions.

'The term "supercavitating", as understood here, implies that the cavity extends beyond the trailing edge of the foil

Paper presented at the RTO AVTLecture Series on "'Supercavitating Flows ", held at the von Koirmdn
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2. Linear solution of the problem of a supercavitating flow past a thin foil with
different closure schemes

Consider a linear problem of a steady supercavitating flow past a flat plate with different closure schlemes. In
what follows all quantities and functions are rendered nondiimensional with use of the chord c of the plate and
the velocity of the incoming flow U,. To avoid complicated derivations when explaining the essential points of
the lecture, one assumes that the cavity detaches from a sharp leading edge of the supercavitating foil of zero
thickness. In most of the examples, discussed herein, the foil is represented by a flat plate at at an angle of
attack.
Assume that the flow perturbations are small. Expanding previous nonlinear formulation, one easily shows
that the linear flow problem for the perturbation velocity potential ( =(x, y) is governed by the following
equations

"* Laplace equation
&2• + 2•

OX2 + 0O , (x y) E D; (3)

"* Flow tangency condition on the wetted part of the foil

dY0  y 0-O, x (0, 1), (4)

Oy dx

or, for a flat plate yo(x) -axý,

8y -(a, y 0-O, x (A,1),

where (a is angle of attack (in radians);

"* On the boundary of the cavity

As the linearized pressure coefficient is approximately equal to

2 (p - po).) 0

and the cavitation number (T is defined as

2 (p, -p) (6)

where Pc and Po are pressures in the cavity and at the upstream infinity. Then, the perturbed horizontal
velocity on the boundary of the cavity should he

0&0 1
ux =2, y= 0±O xE (O1) and xE (1,1), (7)

where 1 is the cavity length measured froom the leading edge of the foil and related to the chord of the foil;

"* Condition at infinity

( Z j_-0_ for x 2 +Y -•c(

where i and j are unit vectors of the axes x and y correspondingly.

It should he noted that the linearization implies that both (i and (T tend to zero at the same speed, i.e. (T =)((a).
In order to use powerful methods of the complex functions' theory it is convenient to re-write the flow problem
formulation, described previously, in terms of complex variables and functions. Instead of the perturbation
velocity potential o =(x, y), introduce a complex potential F F(z) =(x, y) + i Vy(x, y), where i = -I
is an imaginary unit, z x + i y and Vy(x, y) is a stream function. In this case the solution of the problem is
reduced to finding an analytic function dF/dz w(z) =u(x, y) - i v(x, y) in the domain D of the flow with the
following boundary conditions on the flow boundaries

e On the wetted part of the plate

ýýw(Z) =-v(Xý y) =• yV O - O, x E (0, 1); (9)
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"* On the cavity 1
Rw(z) =u(x. y) ( y 0= 0± x (0 1) and x E (1. 1); (10)

"* At infinity
w(z) 0 O, for z cc. (11)

2.1. Cavity closure models with a square root singularity

In the nonlinear formulation this type of the cavity closure models is characterized by presence of a stagnation
point in the region of cavity termination, i.e. that of Riaboushinsky and Efros-Gilbarg (see Fig. 1(1) and Fig.
1 (2)). As discussed in [1] a linear analogue for all such models contains a square root singularity near the point
of the cavity termination. Consider a corresponding flow problem solution following [1].
The linearized "physical" complex plane z of the flow past a foil with a trailing cavity of finite length is illustrated
in Fig. 2. Note that in this plane the plate plus the cavity are represented by a slit y 0 = 0, x E [0, 1]. To solve
the problem, map the exterior of the slit in the complex plane z onto the upper half of the auxiliary complex
plane + • + i rl (see Fig. 2) with help of the function

___ a -1-I. (12)
z-1-l

The inverse function, i.e. z z((), can be written as

(2 ± a 
(13)

The correspondence of the p)oints in z and ( planes can be seen fromn Fig. 2. Note that the p)oint z 1, which
represents the closure point of the cavity in the "physical" plane, passes into a point c oc in the auxiliary
halfplane • • < 0. In fact, for z - 1

( z -ia -c. (14)

On the other hand, the infinity of the "physical" plane, i.e. z oc passes into the point • -ia. Eventually,
the wetted part of the slip coincides with the interval E C (0, 1) whereas the upper and the lower boundary of
the cavity in z plane are imapped onto the negative rl 0 - 0. • < 0 and positive rl 0 - 0. O C (1. cc) parts of
the real axis in the auxiliary plane.
In the context of the closure models it is important to specify the anticipated behavior of the complex conjugate
velocity w (() in the vicinity of the cavity closure point. It can he shown that the linear analogues of the nonlinear
closure models, containing a stagnation point within the cavity termination zone, are characterized by a square
root singularity of the perturbed velocity at the corresponding closure point (i.e. at z 1). Assuming that

for z-+l w(z) : r, (15)

Accounting for the expression (14), it ineans that in the auxiliary plane

r,• ( A,(6
w[z(O)l iav" =M( (6

where A is a real constant to he determined.
It is convenient to solve the boundary problem for the function

I
w*(z) w(z) - - (, (17)

For this function w* (z) 0 on the boundary of the cavity, i.e. on rl 0 - 0, { < 0 and I < < Dc. The
latter fact simplifies the final expression for the solution. Note that the boundary conditions for w* (() on the
real axis of the auxiliary complex plane ( are mixed, prescribing ýýw* (() on one part of the axis and Rw* (() on
another part of the axis, see Fig. 2.
Assuming a quarter-root singularity w(z) (O(z-1 / 4 ) at the leading edge and square root zero w(z) =O0(1 -

z)1/2] at the trailing edge, and using Keldysh-Sedov formula, one can derive the solution for the complex
conjugate velocity in the form

w(C) l I ± V , IA (_1
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Note that B and A are real constants to he determined, and the last termn in the formnula is a permissible solution
accounting for the required behaviour of the function w(() for • iA(.
After integration, one can obtain

w(O) -(T + (B - cv) + A I(1- ( ). (19)
2 (

The solution thus obtained contains three unknown (real) parameters a, B and A. The first relationship between
these parameters can he obtained by applying the infinity condition (8). For < -ia the conjugate complex
velocity should equal zero, i.e.

w(-ia) =0, (20)

The latter complex equation is equivalent to the two real equations

Rw(-ia) 0, % w(-ia) = 0. (21)

The remaining relationship necessary to determine all three unknowns of the solution can he obtained from
the closure condition, which, in other words, is a requirement that the cavity should have finite length. The
corresponding equation can he written as

[W(Z)]dZ ~7W(Z) dZ W d(= (22)

where contour £C encloses the slit y = 0 ± 0. x E (0. 1) and is passed in the clockwise direction, and the contour
£C encloses the point ( = -ia and is passed in the clockwise direction. The derivative (dz/(d( can he derived
from the expression (13) in the form

dZ 2h 1( 2(3 (23)

Treating the equation (22) is reduced to calculation of the imaginary part of the residue of the function
w(()dz/d( at the point < -ia. i.e.

"/w(() (l (1, =i{2, Res [w(()l• __-_ }" (24)

Calculating the residue with use of the Taylor series of w(() in the vicinity of < -ia

w() (1 W (( + ia) + O [(( + ia) 2] (25)
-(1( Li ___

and the expression for the derivative of the inverse mapping function z = z((), one comes to the following form
of the equation (22)

, _ fwo. (26)

The lift coefficient can he derived by integrating the pressure over the slit in the "physical" plane, so that

2Y( (27)
CI p Uc 2R w(z) dz 2 f

Similarly to the previous derivations leading to the equation (22). the calculation of the lift coefficient is reduced
to that of the real part of the residue of the function w(()dz/dQ, which yields

27rlaR {dw (28)

The results obtained for the case of a flat plate at an angle of attack av have quite a simple form. After some
algebra the expression for the lift coefficient becomes

Cy = 7cV•l V ) (29)

The relationship between cavitation nunmber and length of the cavity is given by the formnla

(T 2 2
J - (30)

C o a /-1
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Note that both of the proceeding formulae imlp)ly that 1 > 1. Using the expressions, describing parametric
dependences of the lift coefficient and the ratio uT/a• on the nondinmensional length of the cavity 1, one can
obtain the following formula

2.2. Wu-Fabula closure model

The solution, corresponding to Wu-Fabula cavity closure model (see Fig. 1(4)), can be easily derived from the
previous solution by requiring a "smooth' termination at the point z = 1, or ( = c. This is achieved by putting
the real constant A equal to zero. The corresponding linearized "physical" plane is shown in Fig. 3. The
resulting expressions for the lift coefficient and the ratio (T = uT/(a versus nondimensional length of the cavity
are given by the formulae

c( ' (32)

(T 2
J . (33)

2.3. Tulin double spiral-vortex cavity closure model

In the double spiral-vortex model introduced by Tulin (Fig. 1(3)) it is assumed that the cavity termination is
followed by a wake extending to the downstream infinity, [1]. Therewith, the cavity pressure turns abruptly
into that of unperturbed flow. The corresponding linearized flow problem formulation is shown in Fig. 4. Note,
that the linearization implies that the abscissas of the cavity termination points on the upper and the lower
"banks" of the cut are identical. To formulate the relevant boundary problem for the perturbed conjugate
complex velocity, map the exterior of the semi-infinite cut in the "physical" plane z onto the lower half plane

• < 0 of the auxiliary plane (. This can he done by means of the function

( =- -/Z (34)

where the selected branch of the root transfers the point z -I + i(0 - 0) into the point • -1 + i(0 + 0). The
correspondence of the points in z and ( complex planes is indicated in Fig. 4. Note, that the termination points
of the cavity z = 1 + i(0 T 0) are imapped respectingly into the points ( = ±b, where b = . The boundary
conditions for the conjugate complex velocity w(() on the real axis R( = ý of the auxiliary plane are shown
in Fig. 4. Using Keldysh-Sedov formulae to solve this mixed boundary problem, one can derive the following
expression

W(O)i 1

dU +<b ) d ±B 1< (35)

where B is a real constant to he determined. Integrating, one obtains

I H--( ,)H- + ia.(" (36)w ( O = (B - cv) + 2 7 1_ b

where

2y- in 2-) In +I +

2 (37)

Requiring that the perturbhations vanish at the infinity, one obtains B 0. After some additional algebra the
expression for w(() acquires the following form

w(O-= i(,( 1-- F( ) -i(T [2 F( +±•-
2 vb +l v/ +-l

1 •± / -I) bH-1 b-I

In +Hb + 21n (38)
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Finally, the expression for the lift coefficient is obtained as
Cy = b(b-iI- b-1), _ (39)

where b 1. The ratio (T versus 1 is described by the following formula

[ ( b - I ( b--_I+i- b-+-I)-In b+ bi 1  (40)
T T 7 v/b + bv/b--- b-lI

The previous two expressions can he viewed as a parametric dependence of the lift coefficient upon cavitation
number and angle of attack, or rather as Cy/(A as a function of uT/(a for the linear supercavitating flow past a
flat plate with a Tulin double spiral-vortex cavity closure scheme. Note that in order to find the relationship
between the cavitation number uT and the length 1 of the cavity, it was assumed herein that the total drag of
the cavity+wake system should he equal to zero. The latter statement can be formally expressed as

2 (() '(I(1= 0. (41)

The corresponding calculation is reduced to finding the resudue of the integrand at the infinity in the auxiliary
plane (.
Plotted in Fig. 5 are curves of lift coefficient related to angle of attack versus cavitation number related to
angle of attack, i.e. Cyl/(a = f(u/I(A) for different linear analogues of the cavity closure scheme for the case of a
flat plate. Presented in the Figure are the results:

1. For Tulin open closure scheme featuring two double-spiral vortices,

2. For a cavity scheme with a square-root singularity of perturbation velocity at the cavity termination
points, and

3. Wu-Fabula cavity closure scheme (no singularity at the cavity termination point)

Plotted in the same Figure are experimiental points, obtained by F.F. Bolotin and E.B. Anoufriev for a series
of segment foils with different relative thickness 4.2, 5 and 6%, [3]. It should he noted that in the case of the
developed cavitation starting from the leading edge, the flow past the segment foil is equivalent to that of the
flat plate. It follows from the comparison of test data with the calculated results that the correlation is fair not
only for the case of developed cavitation (long cavities), but also for the transitional regime when I < 1 < 1.5.
Tulin double-spiral vortex scheme provides satisfactory results for the lift coefficient of flat plate up to ur/Ta z 6,
i.e. practically up the boundary of supercavitation. The experimental points are seen to he located between
the schemes 1) and 2). Wu-Fabula scheme allows to obtain the magnitudes of Cyl/(a only for uT/(A < 2. i.e. for
sufficiently long cavities. For uT/(a close to 2, Wu-Fabula scheme gives somewhat excessive magnitudes of the
lift coefficient.

2.4. The case of zero cavitation number - analogy with a fully wetted foil.

The simplest albeit practical case corresponds to zero cavitation number. Therewith the cavity becomes semi-
infinite. The "physical" flow domain in z-plane is transformed onto an auxiliary lower half-plane ( = rl < 0
with the mapping function ( - -z, discussed previously. As before, one can easily construct the solution of
the ensuing boundary problem for w(() with use of the Keldysh-Sedov formula. Restricting the analysis to the
case of a flat plate, one comes to the following simple formula

w(•) (•(i • ),(42)

which satisfies the requirement that the perturbed velocity should vanish at the infinity. The latter property of
(42) can be easily verified. In fact for large z -- c, ý --c oc

il -o 0. (43)

In particular, the perturbed velocity distribution on the wetted (lower) side of the plate (• - - io0 ý c (0A 1))
biecomnes

I = 1 (44)S0- o)I ý
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Referring to the classical theory of a thin foil, one can conclude that the above result coincides with the perturbed
velocity distribution on the lower side of a flat plate placed in a uniform flow in (-plane. This suggests a concept
of an equivalence, existing between the original supercavitating flow in z plane and a fictitious non-cavitating
(fully wetted) flow in (-plane, which was first indicated by Tulin.
It should be noted that since the fluid domain has been mapped entirely into the lower part of the (-plane, the
region ýý( = rl > 0 has no physical significance. Mathematically, it can he regarded as the second Riemann
sheet of the z-plane, or as the domain of the cavity. Owing to the fact that on the boundary of the cavity in (
plane the real part of the conjugate complex velocity w(() is zero, one can use the Schwartz reflection principle
to continue w(() across the real axis R•( = (excluding the cut ý E (0, 1)), provided v is an odd function of rj.
To ensure that w(O) - (•, r) = + iv(ý, rj) is analytic in the entire (-plane, it follows from the Cauchy-Riemnann
equations that v should he an even function of rj. Thus, the appropriate reflections into the upper half-plane of
( are given by

"a(•,"•/ -- 'a( , -'/),(45)

v(•,'rl) -- v •, -rl)(46)

The reflected boundary-value problem shown is mathematically identical to the lifting problemn of a fully wetted
thin foil. In both cases a Kutta-Zhukovsky condition should he imposed at the trailing edge, and the perturbation
velocity should vanish at the infinity. Thus, the solution of the supercavitating flow proble'm (u= 0) in the
co'rfplex plane z written in auxiliary complex variable ( is identical to that of a fully wetted foil in (-plane. This
analogy enables to obtain the coefficients of hydrodynamic forces and moments of the supercavitating foil from
those of a fictitious fully wetted foil. For example, to obtain the lift coefficient CY of the supecavitating flat
plate, one has to integrate the pressure coefficient along the wetted part of the plate, i.e.

2Y 01 •1

Cy - 2 C4(x, 0 - 0)4dx= -2 ,a(x, 0 - 0) dx. (47)

Passing over to the integration in (-plane (X -2), one derives fromn the previous line
1 (48)

C =-2 1u(x,0 -0)dx=-2 u(,0 0)dlX1 4 u(4 1 0 - 0)ý du (48)
J -2 ,aio (0 ) - do

Accounting for the adopted reflection of va into the upper half-plane (, one can re-write (48) in the following
way /y=- (ý0 ) 1 2 [(0-+-0) -Q 0 -0] 10 10

[C,(ý, 0 - 0) - C,(ý, 0 + ±0)]d = Cm, (49)

where C,, is a coefficient of the longitudinal hydrodynamic moment of a fictitious fully wetted foil of length
-C( in (-plane. This coefficient, calculated with respect to the leading edge of the fictitious plate, is defined

as
aS 2 _< 2AI< (50)

[)U 2 C2 pU 2VCVC, 
50

Similarly, one can show that the coefficient of the longitudinal hydrodynamic moment of a supercavitating foil
(oT = 0) is equal to the coefficient of the third moment of the fictitious fully wetted foil.

1 f1

C , C/ (X,0 -O)X dx =L [p, 0-) cp 0,o)]3 (3 d (51)

It can also he shown that the drag coefficient for the supercavitating foil can he found as

Cx C2 (52)

This useful equivalence was first established by Tulin and Burkart in 1955. For a supercavitating flat plate
(oT = 0) at a given angle of attack cv the corresponding calculations give

7rCV 57r(,v 7TrCV2

CY, 2 Cm 32 C x.=2 (53)

it is interesting that the lift coefficient for the supercavitating flat plate is four times less than that of the fully
wetted plate and two times less that for the case of a flat plate gliding on the surface. In comparison to the
fully wetted flat plate, here the centre of pressure is shifted from the quarter-chord point to a position 5/16
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of the chord downstreamn fromn the leading edge. Note that the drag coefficient of the supercavitating plate is
seen to be equal to Cysa, i.e. the total force is normal to the plate. This is different fromn the fully wetted case,
where, according to D'Alembert paradox, the vector of the force, acting upon the foil, is strictly vertical due
to the suction force at the leading edge and the resulting drag is zero. In the supercavitating ease there is no
suction force, since the square root singularity of the equivalent fully-wetted flow in the (-plane is reduced to a
quarter-root singularity in the physical z-plane.

3. Uniformly valid asymptotic solution of the problem for the flow past a super-
cavitating flat plate

The linear theory reveals a quarter-root singularity of the perturbation velocity at the leading edge of a super-
cavitating foil. This defficiency can be corrected by a special consideration of the local region of the flow near
the leading edge, as first done in [4].

3.1. Linear solution as a leading order outer expansion

Consider the perturbation velocity distribution along the wetted (lower) side of the supercavitating (aT = 0) flat
plate, following from (44). In the auxiliary variable R( - c (0, 1) the horizontal component of w equals to

--00) = w(() a( I (54)

As follows from the mapping function ( - the real variables x and ý are related to each other as

-Tx, for y-0O±O (55)

so that on the wetted side of the supercavitating plate x E (0, 1), y = 0 - 0 the expression (54) can be re-written
in terms of "physical" x coordinate

u(x, 0 - a) -cV1- (56)

This expression shows explicitly the quarter-root singularity of the perturbation velocity (pressure) in the
vicinity of the leading edge of the wetted side of the supercavitating flat plate. In fact, for x - 0 + 0

11/

v,(X. 0 0- ) - CI((X. 0 0- ) a -( 1/4 (57)

Considering this linear theory solution as an outer expansion of a comlplete solution of a nonlinear probleln for
a flow past a supercavitating flat plate for a- 0. i.e.

v,,(x., 0 0- ) = u,°(x , av) =au1,1(x) ± 0((a02 ) u711'(, X) =0(1) (58)

one can note that this asymptotic expansion loses uniform validity for sufficiently small x when the product
a•u•(x) acquires the order of 0(1). This takes place at distances from the leading edge of the order of x = 0(a 4).
For the purpose of further analysis, one would need to have the expression for the ordinates of the upper
boundary of the cavity from the linear theory. Recalling that for z = x + i(0 + 0), x > 0 the ý and x coordinates
are related as ý = -xV/., ý < 0, one arrives at the following outer expression for the vertical component of the
conjugate complex perturbation velocity

v(x, 0 + 0) = w x) v 0(x, c) - ( i(1- 1 H- x')

-(a + ( xV.l(x, 0 + 0) + 0(a 2 ) v- 0(1) (59)

The outer expansion for the ordinates of the upper boundary of the cavity, measured with respect to the plate
can be determined with use of the following formula

y(X.,0 + 0) a / v'(x, 0H- 0) (d + 0(a 2 ) = y'(x•. 0 + 0) + 0(a ). (60)

Integrating this expression with account of the formula for v'(x, 0 + 0) gives the following expression for the
outer contour of the upper boundary of the cavity

y°(x,0 +H0) cy'(x,0 +H0) •-[H-2 x) x- ln( + H- H- x) (61)
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3.2. Inner expansion in the vicinity of the leading edge

As follows from the preceeding estimates, the linear solution is not valid in the vicinity of the leading edge of the
supercavitating plate, having dimensions of the order of O(a)). As a result of this nonuniformity the pressure
on the wetted side at the leading edge becomes unrealistically infinite. This also means that within the initial
characteristic scale of the order of the length of the plate the stagnation point, located close to the leading edge
is invisible. In order to the flow near this edge in more detail, introduce local (stretched) coordinates

x Y z (62)
O!V4 'V O4 'V O4

In these inner variables for cv a 0 the training edge of the plate recedes to the infinity and the inner flow
becomes as shown in Fig. 6. For zero cavitation number this flow is completely characterized by the distance s
of the stagnation point from the leading edge of the plate. The inner problem is solved with use of the velocity
hodograph method and conformal mappings.
Introduce the hodograph variable

r exiO (63)
w2 g

where w (Z, a) is the conjugate complex velocity (of relative fluid motion) in the inner region of the flow,
q =wI& and 0 - arg w. To he able to determine the flow pattern in the nearfield using hodograph complex
plane, one requires additionally an estimation of the behaviour of the angle 0 of the tangent to the (upper)
boundary of the cavity at the downstream infinity. Essentially, this is equivalent to estimating of the one-term
inner limit of the one-term outer expansion. Replacing the outer variables in the expression (61). by the inner
variables, i.e. x a 4X and y a 4

Y, and expanding for X 0(1) and a - 0, one obtains

y(x) =y(a4 X la- ( X. a)

4 44X3/4 + -2
2
X5/

4  
4 O(a 6)] (64)

L3 5 1

wherefrom the one-term inner expansion of the cavity contour in the form

yc yi(Xc) 4 X 34± ()2) (65)
CV4 3

The inclination of this curve for X ý cc tends to zero, so that one can assume that 0 0 at the downstream
infinity. The hodograph plane, shown in Fig. 7, is then transformed onto an auxiliary plane ( in such a way
that the images of the plate and the cavity he found on the real axis -: :. see Fig. 7.

2(r+ r)(66)

To complete the procedure of obtaining the inner solution it is necessary to relate the complex potential of
relative motion of the fluid

P + ivy. (67)

where ( and Vy are correspondingly the velocity potential and stream function (of relative motion) with the
function w' by means of an intermediate complex plane (. The complex potential plane FK, shown in Fig. 7, is
transformed onto (-plane with help of the function

Ai 1)2 
(68)

where Ai is a real constant. Using formulae (63) and (66), one comes to the following relationship

w i -, /(-2 -1 (69)

where the plus sign is used for ] < 1, and the minus sign should he taken for ] > 1.
The relationship between Z and w' through complex variable ( can he derived in the following way

Z2 (2

dZ =Z2 - ZI (70)
d(1 W

ZtC
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Using formulae (68) and (69) in comlbination with (70) and integrating fromn the leading edge to the stagnation
point, one finds

17
Making use of (70) one can find the following relationship between Z and • • on the plate and the cavity in
the following form

"* On the plate, for 0 < X < aY=0-0
X 24r 1 1 1(2 - 1t 3/2a 172(- 1)2 1 3 (•-1)/ 3 (72)

"* On the plate, for a < X < DcY=0-0
24 1 1 1 1)23/2 1(73/

a +• 172(- 1_) 2 + I + -3 ( 1-1)a

"* On the cavity, -1 < < I
Z =X +Y -24[ 1 1 3 i(1 - 2)3/2]

17 1) + - + -+ -(74)

a - 1 8 (1- )3i

The latter equation provides a paralmetric relationship between Y Y(ý) and X X(ý) on the cavity contour
in inner variables.
Having determined the relationship Z Z( ), described by (70), with account of (69) and (70) one can find an
imlplicit expression for distribution of the velocity along the plate in the inner region

S 1724[ 2- Qu 1 2 -ui)+÷I\l- ± I + +3 for O<X<a, Y=0-0; (75)

and and 24ui 1(1[ui 3 21

2 I+ + + - for a<X< cc, Y= 0-0. (76)
a 17L(1_-W_ )4 ( F-- 1 7) 3 1 -j) 3i

3.3. Matching and additive composition

To determine the paramneter a, entering the inner solution, one uses the Van-Dyke asymptotic matching principle,
[2]. First of all, find a one-term inner representation of the two-term outer solution 2

u° I/1- CV (77)

On the other hand, take the outer representation of (75), (76) for u,. Introducing x =(4X, one can write

I u - 0, + O(a 2 ). (78)

Substituting this expression into (75) and (76) expanding it for (a - 0 and x =fixed, one has

U• - [ 48a ,•1/4 (9
S17x)

Comparing formulae (77) and (79) gives
17

a- 17 (80)
48

wherefromn one can see that the distance of the stagnation point fromn the leading edge is equal to (v4 /4.
Uniformly valid expression for the velocity u onl the wetted side of the plate can ihe found by means of the
additive composition of the outer (56) and inner (75),(76) solution, The latter procedure implies adding these
solutions and substracting their conmnmon part (77), i.e.

'11 = ua + ux - u = u + u° - uO = 1, - 71 (81)

The uniformly valid distribution of the pressure coefficient is calculated by means of the formula

( 2 (aC)2 (82)

Figures 8 and 9 illustrate co)mparison of the pressure distributions, calculated using the formula (82) and the
exact solution for (a 100. The results of the linear theory are plotted with dot-and-dash line. The upper cavity
shape (in stretched coordinates) in the imnmediate vicinity of the trailing edge of the supercavitating plate is
shown in Fig. 10.

2
Adding preliminarily the velocity of the incoming flow
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4. Supercavitating foil with a spoiler

As another example of how the matched asymptotics technique can he used to corot)lemient the outer (linear)
expansion of the solution in a local region of large flow perturbations is that of a flow past a supercavitating
plate with a spoiler, [5], [6]. The spoiler is represented by a plate of a small relative height mounted upon the
lifting surface either at the trailing edge on the pressure side or at an ap)p)ropriate station on the suction side.
The spoiler is usually oriented normally to the oncoming stream. The presence of the spoiler results both in local
pressure rise due to creation of the stagnation zone in its vicinity, and redistribution of pressures around the
entire foil, and, eventually, the additional lift occurs. Experiments of recent years have shown that the spoiler
is one of the most effective, yet relatively simple devicess to enhance the lifting capacity of the supercavitating
hydrofoils as well as the thrust of the supercavitating screw propellers. It is worth mentionning that Professor
Tulin marked spoilers on one of the branches of his famous family tree of supercavitating flow theory, [6].
In the example below, considered is the case of a two-dimensional flow past a supercavitating foil with a spoiler
of a small relative width E at a trailing edge. For the sake of illustrating the procedure, the simplest case of zero
cavitation number is considered. In the outer region (far from the spoiler in terms of its length) appropriate
linear solutions are used incorporating an admissible (square root) singularity of unknown strength at the
trailing edge. In the inner region (in the vicinity of the spoiler) the problem is reduced to that of a Kirchhoff
type separated flow past a symmetric wedge. Asymptotic matching of the outer and inner solutions permits to
determine hydrodynamic characteristics of the supercavitating foil with the spoiler.
Let the supercavitating foil he slightly curved and oriented to the flow at a small angle of attack (V. As per
foregoing, assume that the cavitation number T= 0. The spoiler has a small relative width E << I and is
oriented at an arbitrary anglef3 to the foil at the trailing edge.

4.1. Flow near the spoiler (inner problem)

In the region near the spoiler introduce stretching of the local independent variables

x-1 y
X , Y , Z= X+iY. (83)

Assume that the distance from the flow boundaries is of the order of the chord, i.e. 0(1). Then, the pattern of
the local flow does not depend on the type or on the umlmber of the boundaries. It does not depend either on
the distance of the trailing edge from the flow boundaries, and represents a flow past a semi-infinite horisontal
flat plate with a spoiler of a unit width. Analytic continuation of this flow into the upper half-plane leads to a
problem for a separated flow of unit velocity past a symmetric wedge. The solution of this classical problem call
be obtained by the methods of the jet theory in an ideal fluid. Following [7] find the conjugate complex velocity
w4(Z), by mapping the complex potential plane FP(Z) = 4 + iyi•3 and the logarithmic velocity hodograph
plane I -in w -In w + i0 upon auxiliary plane t (Fig. 11):

F(U) =o2 • i -In + - (84)

where Po is a parameter related to tile wedge angle 3 (in radians) by means of tile following relationship

[2/ J2 H- 1) 23 •/ t 1 (85)no 2

For better convergence of tile integral in tile denominator it is practical to to use it in tile following alternative
forIm

1 _ 2( + 1) ;/ td(t
/1( t2 H

S1 t (1-/2 ) [(V1 _ t2 + 1)213/7 2223/,] (It H 2- 3/in (86)

Tile coordinates of tile free boundary of tile cavity, detaching from tile spoiler (lower cheek of tile wedge) can
he calculated with use of tile formula

I 2H1) 3 ¶I ( i (87)( rlv t (It + exp (-i0i)(

3of relative fluid motion
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In order to perfomn the inatching of the inner solution to the outer solution one has to obtain the asylnptotics
of the inner solution far the spoiler. With the purpose to perforln the inatching of the ordinates of the free
boundary of the cavity4 find the asymptotics of the free boundary for X - c, (t -cc)

12 2ifl t

Z(t) X(t) + iY(t) - 2,p (l2 ±+ ± 0* +C (88)

where

C0 2 -( 12 - 1] (89)

wherefromn

y X, for X -- +c (90)

Besides, estimating the outer limit of the inner solution, one can show that the outer description of the conjugate

complex velocity has a square-root singularity at the point x = 1. In fact, expanding w(t) and Z(t) for large t,

one can obtain

Z(t) _ Pot 2 + O(t), (91)

and
1V 2fJ/, 2ifl

w2 (t) exp [-i(t) ( - 0 (1) (92)

Excluding the auxiliary variable t from these two expressions, one can find

wi(Z) d I 1 Z -- cc (93)

dZ /7'

On the foil

Z = x (94)

Finally, one can evaluate the behaviour of w on the foil near the trailing edge

2______ for x -- 1 - 0 (95)

4.2. The outer (linearized,) flow

For the simplest case of zero cavitation number (aT 0) and angle of attack (v << I the flow field outside of
the vicinity of the spoiler experiences small perturbations. The corresponding linear solution for the conjugate
complex velocity can he written in the form

W( o) iBo (96)

Note that the foregoing expression differs from the solution for the foil without spoiler (42) by the last term,
where B, is a real constant. This latter term represents an admissible solution of the corresponding Riemann-
Hilbert mixed boundary problem which

"* has zero real part on ( = ý > I and < - < 0. i.e. on the boundary of the cavity

"* has zero imaginary part on I > < - > 0. i.e. on the wetted part of the foil

"* yields a square root singilarity of the type 1/ x - at the point I - - 0, corresponding to the
point x = I - 0. In other words, such a solution secures matching of the outer solution with the inner
solution, discussed above

In fact near that point ( I - - 0. and x ý I - 0) the "spoiler" term behaves as

8B, B, 1± x 2B8  (97)

4
Note that the matching can be performed with respect to other parameters of the flow, e.g. pressure or velocity on the foil
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"* yields a (proper) quarter-root singularity of the type x-1/ 4 on the wetted side of the foil close to the
leading edge.

In fact, near the latter point one has

Si B, B(98)
-1) • /zxxl-l1 ;/4

"* complies with the requirement of the decay of the perturbation velocity at the infinity

The real constant B, characterizes the strength of the square-root singularity at the point x = 1 and has to he
determined from the matching procedure. Matching of the linearized outer solution and the inner solution can
be performed in terms of the perturbation velocities, or in terms of the ordinates of the lower free boundary of
the cavity detaching form the spoiler. Using the former option and employing the matching principle, one should
equate the outer expansion wi° of the inner solution of with the inner expansion w~i of the outer solution'. In
other words, one should equate the expressions (95) and (97). As a result, the constant B8 is obtained in the
form

B, V17 (99)

It is easy to verify that the matching could have been done in terms of the ordinates of the lower free boundary
of the cavity. Find the asymptotics of the outer description of this boundary6 near the spoiler, i.e. for x - 1- 0.
Using the kinematic condition on the cavity v, = 0

dy B_-v V %' - " ( x/Jz > I, > 1

Integrating this expression one obtains

x V- dx d ( ý(
If ~ ~ 2 v ( -, t ýd i

-B, {2 + -1) 2 ln{2x-1+2 I - 1)]}. (100)

Asymptotic representation of (100) for x I - 0 is with use of the previously obtained magnitude of the
constant B

4f3
y 1-2 2B. -1r-I (101)

Re-writing (90) in terms of the outer variable x one can verify complete coincidence of the resulting expression
with (101). This fact proves correctness of the matching procedure.
The additional lift coefficient due to presence of the spoiler

C .J -2R w, (z) dz - 0v,,•(x:) d = 2BýT =22N//2ofIVIE (102)

The drag coefficient due to presence of th spoiler in the case of flat plate and zero angle of attack is

2/ Z 1 ( / u 2d= 4(pof32

W / (17 27rB 0 32(103)

Some calculated results reflecting dependence of the spoiler contributions to the lift and drag coefficients on the
spoiler installation angle f3 are presented in Fig. 12. For the case of non-zero angle of attack (V • 0 the resulting
lift and drag coefficients can he determined with use of the known superposition rules

C C + C >j (104)

C + VC"2(105)

For the case of the flat plate the concrete expressions for these coefficients become
7CVCY= -+ 2\2o,1F(106)

51n the overlap regions
6
Based on the possibility of linear superposition, it is sufficient to take the case of zero incidence
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Cý,, c + 2 f23 g)
2  (107)

The spoiler contribution to the upper boundary of the cavity can hbe calculated by integrating the corresponding
upwash" ýŽw = v for z =- +i, x + i , [ -( x, x > 0. Using (96), one has

y V(X) dIX / V(O) - dý 2 / (O -r (X

2BSL + ± n(O--x - 4"(108)
The structure of asymptotic solutions can he used for somne useful estimates. One can evaluate e.g. optimal
ratio angle of attack and relative length of the spoiler. Utilizing expressions (106) and (107) one can write the
following formula

L C ~ HbL CV = H- a(,1 + b, (109)D C ,,, (e•,r + d,)2 + ef/t

where the coefficients a., c,, b2, d, can he easily determined comparing (106) and (107). Parameter r is defined
as

(110)

and cf - Cf (Re) is a friction coefficient, which can he calculated as a function of Reynolds number with use of
an appropriate formula. For example, assuming fulll turbulent regime of the flow past the wetted part of the
cavitating plate, one can use the formula

0.455
Cf (log Re) 2.58  (111)

Differentiating (109) with respect to r and equating the result to zero, one obtains the following optimtal
magnitude of r

KoP= -cb 2 + X/(cb. - a•,dE)2 + Cf/1 (112)

Qa~C

Note that for Cf/i - 0 one can assumne that

Kgopt d,-2/ ý(3f

Cca 7 
(13

so that the optimal ratio cv/ /• is negative. The latter results means that to secure maximum lift-to-drag
ratio, one has to provide a negative angle of attack, for example for a spoiler normal to the plate (f3 =re/2),
(AOP = -0.748,/E.

The value of iopt can he employed to calculate the maximum lift-to-drag ratio of a flat plate with a spoiler at the
trailing edge. However, there exits a somewhat contradicting requirement of univalence which, in simple words,
means that the upper side of the cavity generated by the optimal combination of the spoiler and (negative) angle
of attack should not intersect the plate7 . One can find the domain of univalence by considering the thickness of
the cavity with respect to the plate. Using, the corresponding expressions (61) and (108) for the contributions
to the ordinates of the upper side of the cavity due to angle of attack and presence of spoiler, one finds the
aforementionned cavity thickness in the form

yt(X) Y{ + Ye =f(Vfa(X) + VI • 3)Tf(X) (114)

'rc

where

fa (X) [(1 + 2x/7) H x7-ln(/1 + ) (115)

f2 (x) 2{ x H- + Hln( H+ x7 - 4)] (116)

Requiring that the cavity thickness he non-negative at the trailing edge of the plate (yt(l) < 0), one obtains
the expression for the domain of univalence in terms of of the relationship between angle of attack and length

of the spoiler
-• < %1 Nof3VI/•~3), (117)

VIE f(1)

7
Condition of univalence for this case was first found by A.S. Achkinadze and G.M. Fridman
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where

N = 4/2 / 21) 0.285 (118)rc3v/2 - ln(v/2 + 1) 0.8

The optimal and "univalent" ratios a/ /7 are plotted versus the spoiler installation angle 3 in Fig. 13. This
Figure clearly shows that in a certain range of 3 the optimal ratio of the angle of attack and the length of
the spoiler cannot be achieved in reality. The ("pedestrian") maximum of lift-to-drag ratio derived through
optimisation of the ratio (a/ /7 is plotted in Fig. 14 together with the lift-to-drag ratio attainable within the
regime of univalence.
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Figures to "Supercavitating flows: small
perturbation theory and matched asymptotics"

- U0

p'l 5 U, 0 identical

(Pl

Fig. 1 Selected nonlinear cavity closure models (1 - Riaboushinsky model, 2 - Efros-Gilbarg model, 3 - Tulin
double-spiral vortex model, 4 - Wu-Fabula model)
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:'H
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Fig. 2 Linearized "physical" comlp)lex plane z and auxiliary comnplex plane • for the case of closed cavity with
singular termination, the ground
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Y Rew=a/2

Imw=o Rew=a/2

Fig. 3 Linearized "physical" comlplex plane z for the case of smooth cavity-wake transition (Wu-Fabula cavity
closure scheme)
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Fig. 4 Linearized "physical" comlplex plane z and auxiliary complex plane ( for the case of cavity termination
on Tulin double-spiral vortices

9
0)o Cy /
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3 4

3 3 foil thicknessa)- in the tests
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Fig. 5 Lift coefficient (C,/I() of a supercavitating flat plate versus relative cavitation number (T/a for
different linear analogues of the cavity closure models (1 - Tulin double-spiral vortex scheme, 2 - closed cavity

schemne, 3 - Wu-Fabula schemne)
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Fig. 6 Flow near the leading edge of supercavitating flat plate (inner region)
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Fig. 7 Complex planes for the hodograph solution of the p)roblelm for the flow in the vicinity of the leading

edge
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Fig. 8 Pressure distribution along supercavitating flat plate (a' 10°) (solid line - uniformly valid MAE.,
dashed line - exact solution, dot-and-dash line - linear theory)
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Fig. 9 Pressure distribution in the vicinity of the leading edge of a supercavitating flat plate for (Vo 100
(solid line - MAE, dashed line - exact solution)
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Fig. 10 Upper cavity shape in stretched coordinates in the immediate vicinity of the leading edge of

supercavitating flat plate
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Fig. 11 "Physical" plane, complex potential plane and hodograph plane for the flow problemn solution near

the spoiler
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Fig. 12 Lift and dIrag coefficienits of a snjpercavitating flat p~late with a spoiler versus sp~oiler inistallationi anigle
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Fig. 13 Optimal and~ nniivalent ratios (ilv/E versns the spoiler inistallationi anigle for a snpercavitating flat

p~late with a sp~oiler at the trailing edlge
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Fig. 14 Maximum "pedestrian" and "univalent" lift-to-drag ratios of a supercavitating flat plate with a
spoiler versus the spoiler installation angle


